
An Introduction to MPI
by A.N. Spyropoulos

MPI (Message-Passing Interface) is a message-passing library interface specification.
The goal of the MPI is to establish a portable, efficient, and flexible standard for
message passing. The MPI is the first library that has become the standard for writing
message passing programs on HPC platforms. Thus, there is no need to modify your
source code when you port your application to a different platform that supports the
MPI standard.

The MPI is used on distributed and shared memory systems (SMP/NUMA), and on
Hybrid architectures (SMP clusters, workstation clusters and heterogeneous networks)

The programmer is responsible for correctly identifying parallelism and implementing
parallel algorithms.

1. Getting Started

A General MPI FORTRAN code has the following structure:

program main
implicit NONE
include 'mpif.h'

<declarations>
<Serial code>

MPI Start
<Parallel code and communication>

MPI Finish
<Serial code>

end

include 'mpif.h'

The header file mpif.h is required for all programs and routines which make MPI
library calls. For example, the integer scalars MPI_SUCCESS and
MPI_COMM_WORLD (mentioned below) are predefined into the header file mpif.h

MPI Start
call MPI_INIT(error)

Initializes the MPI execution environment. This function must be called in every
MPI program, before any other MPI function and must be called only once in an
MPI program.
Error code: Returned into the integer scalar error. MPI_SUCCESS if successful.

call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, error)

Determines the number of processes in the group associated with a communicator.
Generally used within the communicator MPI_COMM_WORLD to determine the
number of processes being used by your application. Here the number of processes
is stored into the scalar integer numprocs.

call MPI_COMM_RANK(MPI_COMM_WORLD, myid, error)

Determines a rank within the communicator MPI_COMM_WORLD. Initially, to
each process is assigned a unique integer rank between 0 and (numprocs – 1)
within the communicator. This rank is often referred to as a process ID. Here the

process ID is stored into the scalar integer myid.

MPI Finish
call MPI_FINALIZE(error)

Terminates the MPI execution environment. This function should be the last MPI
routine called in every MPI program.

Example 1: My First MPI FORTRAN Code

program hello
implicit NONE
include 'mpif.h'

integer myid, numprocs, error

call MPI_INIT(error)
if(error/=MPI_SUCCESS) then
 print *, "Error starting MPI program"
 call MPI_FINALIZE(error)
endif

call MPI_COMM_RANK(MPI_COMM_WORLD, myid, error)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, error)

print *, "My ID:", myid
print *, "Number of processes:", numprocs
if(myid==0) print *, "Hello world"

call MPI_FINALIZE(error)

end

2. Point to Point Communication Routines

MPI point-to-point operations always involve exactly two processes. One process is
performing a send operation and the other process is performing a matching receive
operation. To send a message, a source process makes an MPI call which specifies a
destination process, in terms of its process ID, in the appropriate communicator (e.g.
MPI_COMM_WORLD). The destination process also has to make an MPI call to
receive the message.

There are four communications modes provided by MPI for the send operation (Table
1) and there is one mode for the receive operation

Table 1: MPI communication modes

 Completion Condition

Synchronous send Only completes when the receive has completed

Buffered send Always completes (unless an error occurs)

Standard send Either synchronous or buffered

Ready send Always completes (unless an error occurs)

Receive Completes when a message has arrived

All four modes exists in both blocking and non-blocking forms (Table 2). In the
blocking forms, return from the routine implies completion. In the non-blocking
forms, all modes are tested for completion with special MPI routines (i.e.
MPI_WAIT).

Table 2: MPI communication routines

 Blocking form non-Blocking form

Synchronous send MPI_SSEND MPI_ISSEND

Buffered send MPI_BSEND MPI_IBSEND

Standard send MPI_SEND MPI_ISEND

Ready send MPI_RSEND MPI_IRSEND

Receive MPI_RECV MPI_IRECV

The argument lists for the send and the receive communication routines are shown in
Table 3.

Table 3: MPI communication routines arguments.

Blocking
send

buffer, count, type, dest, tag, comm, error

non-Blocking
send

buffer, count, type, dest, tag, comm, request, error

Blocking
receive

buffer, count, type, source, tag, comm, status, error

non-Blocking
receive

buffer, count, type, source, tag, comm, request, error

buffer
the variable name that references the data to be sent or received.

count
the number of data elements to be sent or received.

type
the MPI data type

MPI data type FORTRAN data type

MPI_CHARACTER CHARACTER

MPI_INTEGER INTEGER (KIND=4)

MPI_REAL REAL (KIND=4)

MPI_DOUBLE_PRECISION REAL (KIND=8)

MPI_COMPLEX COMPLEX (KIND=4)

MPI_DOUBLE_COMPLEX COMPLEX (KIND=8)

MPI_LOGICAL LOGICAL

dest

is the destination process for the message. This is specified by the rank (process
ID) of the destination process

source
is the process ID of the source of the message. Wildcard: MPI_ANY_SOURCE to
receive a message from any process.

tag
arbitrary non-negative integer assigned by the programmer to uniquely identify a
message. Send and receive operations should match message tags. For a receive
operation, the wild card MPI_ANY_TAG can be used to receive any message
regardless of its tag.

comm
indicates the communication context. Unless the programmer is explicitly creating
new communicators, the predefined communicator MPI_COMM_WORLD is
usually used.

status
indicates the source of the message and the tag of the message. In FORTRAN, it is
an integer array of size MPI_STATUS_SIZE.
(i.e. integer status(MPI_STATUS_SIZE)

request

non-blocking communication is analogous to a form of delegation — the user
makes a request to MPI for communication and checks that if the request will be
completed satisfactorily only when it needs to know in order to proceed. The
programmer uses this system assigned "handle" later (in a WAIT type routine). In
FORTRAN, it is an integer.

Two typical MPI waits routines are:

MPI_WAIT (request, status, error)
MPI_WAITALL(count, array_of_requests, array_of_statuses, error)

Example 2: Blocking Message Passing

program ping
implicit NONE
include 'mpif.h'

integer numprocs, myid, error
integer dest, source, tag
integer status(MPI_STATUS_SIZE)
integer, parameter :: count=17
character(LEN=count) send_msg , recv_msg

call MPI_INIT(error)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, error)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, error)

tag=1

if (myid==0) send_msg='Message from ID 0'
if (myid==1) send_msg='Message from ID 1'

if (myid==0) then

 dest = 1
 source = 1

 call MPI_SSEND(send_msg, count, MPI_CHARACTER, &
 dest, tag, MPI_COMM_WORLD, error)

 call MPI_RECV(recv_msg, count, MPI_CHARACTER, &
 source, tag, MPI_COMM_WORLD, &

 status, error)
endif

if (myid==1) then
 dest = 0
 source = 0

 call MPI_RECV(recv_msg, count, MPI_CHARACTER, &
 source, tag, MPI_COMM_WORLD, &
 status, error)

 call MPI_SSEND(send_msg, count, MPI_CHARACTER, &
 dest, tag, MPI_COMM_WORLD, error)
endif

print *, myid,'recv_mesg: ',recv_msg

call MPI_FINALIZE(error)

end

Example 3: non-Blocking Message Passing – Exchange messages on ring topology

program ring
implicit NONE
include 'mpif.h'

integer myid, numprocs, error
integer next, prev
integer, dimension(2) :: buf
integer tag1, tag2
integer statuses(MPI_STATUS_SIZE,4), requests(4)
tag1 = 1
tag2 = 2

call MPI_INIT(error)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, error)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, error)

prev = myid - 1
next = myid + 1

if (myid==0) prev = numprocs - 1

if (myid==(numprocs – 1)) next = 0

call MPI_IRECV(buf(1), 1, MPI_INTEGER, prev, tag1, &
 MPI_COMM_WORLD, requests(1), error)
call MPI_IRECV(buf(2), 1, MPI_INTEGER, next, tag2, &
 MPI_COMM_WORLD, requests(2), error)

call MPI_ISEND(myid, 1, MPI_INTEGER, prev, tag2, &
 MPI_COMM_WORLD, requests(3), error)
call MPI_ISEND(myid, 1, MPI_INTEGER, next, tag1, &
 MPI_COMM_WORLD, requests(4), error)

! do some work

call MPI_WAITALL(4, requests, statuses, error)

print *, buf(1), myid, buf(2)

call MPI_FINALIZE(error)

end

3. Collective Communication Routines

Collective operations involve all processes in the scope of a communicator.

MPI_BARRIER(comm, error)

blocks the calling process until all other processes of the communicator comm
have called it.

MPI_BCAST(buffer, count, type, root, comm, error)

the process with process ID root sends the variable buffer to all other processes

MPI_SCATTER(sendbuf, sendcount, sendtype,
 recvbuf, recvcount, recvtype,
 root, comm, error)

 the process with process ID root distributes the array sendbuf to all other processes

MPI_GATHER(sendbuf, sendcount, sendtype,

 recvbuf, recvcount, recvtype,
 root, comm, error)

 the process with process ID root collects the array recvbuf from all other processes

MPI_REDUCE(sendbuf, recvbuf, count, type,
 op, root, comm, error)

applies the reduction operation op on all processes and places the result recvbuf in
process with process ID root. Some common operations op are: MPI_MAX,
MPI_MIN, MPI_SUM

MPI_ALLREDUCE(sendbuf, recvbuf, count, type,
 op, comm, error)

applies the reduction operation op on all processs and places the result recvbuf on
all processes.

Example 4: Collective Comunication – Scatter the columns of an array

program scatter
implicit NONE
include 'mpif.h'

integer, parameter :: size=4
integer myid, numprocs, error
integer sendcount, recvcount, source
real, dimension(size,size) :: sendbuf
real, dimension(size) :: recvbuf

data sendbuf / 1.0, 2.0, 3.0, 4.0, &
 5.0, 6.0, 7.0, 8.0, &
 9.0, 10.0, 11.0, 12.0, &
 13.0, 14.0, 15.0, 16.0 /

call MPI_INIT(error)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid, error)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, error)

if (numprocs==size) then
 source = 1
 sendcount = size
 recvcount = size
 call MPI_SCATTER(sendbuf, sendcount, MPI_REAL, &
 recvbuf, recvcount, MPI_REAL, &

 source, MPI_COMM_WORLD, error)
 print *, 'Process ID = ',myid,' recvbuf: ',recvbuf
else
 if (myid==0) print *, 'Error: numprocs/=4'
endif

call MPI_FINALIZE(error)

end

