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Abstract. A computational package, the FE-BUI, is introduced for automated parallelization of finite element 
codes. The package has been developed at the Computer Center of the School of Chemical Engineering of 
NTUA. Its scope is to provide the ability for parallel execution of serial codes on Beowulf clusters, in an easy 
and efficient way. 
 
 
1 INTRODUCTION 

The main computational cost of the finite element codes comes from the solution of large linear algebraic 
equation systems. Direct (e.g. frontal-type) solvers require large memory and computational cost, and most 
importantly, their serial parts lack the advantage of exhibiting appreciable parallel efficiency. Recent products of 
the development of parallelization tools for finite element codes are freely available packages such as the 
partitioner parMETIS[1] and the solvers Aztec[2] and PETSc[3]. Even with these tools, the effort and cost required 
for parallelization of a serial code might be prohibitively high. The other alternative, the automated 
parallelization of serial codes with parallel compilers, yields no more than 10% reduction of the computational 
cost. 

In this paper is presented a new, homemade, parallel package for the solution of finite element problems. This 
package offers convenience and effectiveness in doing large scale computations since there is no need for the 
user to learn and implement suitable solvers and communication protocols in parallel computer architectures. The 
user simply calls, from the serial code, the parallel solver, which takes care of the mesh partitioning, of the load 
assignment to the available processors and of the parallel solution of the resulting linear systems. The package 
uses parallel iterative solvers that are based on Krylov projection methods[4] and exploits the architecture of 
Beowulf clusters using the MPI (Message Passing Interface)[5] for the processors communication. Typical runs 
with 3D finite element problems on a small, 4-processor cluster yield a reduction of the computational cost by a 
factor of 3. 

2 BEOWULF CLUSTERS 

The outcome of the evolution, during the last decade, of the hardware of the personal computers (PCs), 
mainly in processors, driven by the major companies in this field, Intel and AMD, but also in motherboards and 
memories, is low-cost and high-performance personal computing. Moreover, commodity computer networks 
offer high bandwidth and low latency, like Fast Ethernet, Gigabit Ethernet and the more advanced networks 
Myrinet (http://www.myri.com) and SCI (http://www.dolphinics.com). This progress in conjunction with the 
development of Linux (http://www.linux.org), a freely available, stable and reliable operating system, enables 
large scale computations on Beowulf clusters (http://www.beowulf.org). These clusters are computational 
systems that consist of PCs which are interconnected with a private network. 

Beowulf clusters are distributed memory parallel computers, where each processor has a private memory and 
does not have direct access to the memory of the other processors. Thus, a two-processor communication is 
required when a processor needs data residing in the memory of another processor. This communication can be 
done with the MPI, which is a library of subroutines that a programmer calls from a C or a Fortran code. In this 
case, the parallel execution of a serial code on Beowulf clusters needs the explicit programming of the 
communication between the processors. This is the main obstacle for the user in converting a serial code to a 
suitable, for Beowulf clusters, parallel code. 
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3 THE FE-BUI PACKAGE 

 The FE-BUI is programmed in Fortran 77. Its installation requires the freely available libraries: BLAS[6], 
LAPACK[7] and MPICH[8] or LAM/MPI[9]. The main components are shown in Figure 1. 

 
Figure 1. The FE-BUI components 

3.1 KRYLOV ITERATIVE SOLVERS 

 The computational kernel of the FE-BUI is based on the preconditioned Krylov iterative solvers for the 
solution of large and sparse linear systems, such as the GMERS(m), BiCGSTAB and CG; currently, only the 
GMRES(m) solver is employed.  

The GMRES is preferred for the iterative solution of large algebraic equation sets with non-symmetric 
matrices, on the basis of its parallel efficiency[10]. Starting from an initial guess, ox , of the solution of the linear 
system: 

bAx =  (1) 

where NxNNxN b x,and A RR ∈∈ , GMRES uses Arnoldi’s method[11], combined with an orthogonalization 
technique – the Modified Gram-Schmidt method is used here – to construct an orthonormal basis Nxm

mV R∈  of 
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where 
2oo r/rv ≡ , oo Axbr −≡ . The new approximation of the solution is 

mmom yVxx +=  (3) 

where my  is a vector of size m and it is computed from the solution of the least squares problem 
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In eq. (4), T
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mH +∈R  is an upper Hessenberg matrix, such as 

mm
T
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mxm
mH R∈  is an upper Hessenberg matrix obtained from the mH  by deleting its last row. The least squares 

problem (4) is solved by transforming mH  into an upper triangular matrix mxm
mR R∈ using plane rotations[4]. 

The storage requirements and the computational cost of Arnoldi’s method increase rapidly with m and, thus, a 
restarting variant of the GMRES – the GMRES(m) – is used in practice. When m reaches a certain preset value, 
the algorithm restarts, using the last approximation mx  from eq. (3) as a new initial guess. Thus, two iterations 
are performed: the “inner” m iterations and the “outer” iterations that correspond to the restarts of the 
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GMRES(m). 

3.2 PRECONDITIONING 

A preconditioner is essential in enhancing the convergence rate of a Krylov iterative solver. Thus, the original 
linear system (1) must be transformed to an equivalent one that has better convergence properties. In the FE-BUI 
the linear system (1) is preconditioned from the right 

zM  xb,zAM 11 −− ==  (6) 

In eq. (6), z is a vector of size N and NxN1M R∈−  is the preconditioner matrix which is constructed from a 
deflation technique[12] and it is given by 

T
r

1
N

-1 )UITµU(IM −+= −  (7) 

where µ∈R is the largest eigenvalue of the matrix A, rxr
r

NxN
N I,I RR ∈∈ are identity matrices, NxrU R∈ is an 

orthonormal basis of the r-dimensional invariant subspace, rP , corresponding to the r smallest eigenvalues (in 
terms of the absolute value of their real parts) of the matrix A and rxrT R∈ such as 

AUUT T=  (8) 

The largest eigenvalue and the Schur vectors of the matrix A, needed in eq. (7), are approximated by those of 
the Hessenberg matrix mH . Thus, at each restart of the GMRES(m), a Schur decomposition of the Hessenberg 
matrix is performed to approximate the largest eigenvalue and the Schur vectors corresponding to the smallest 
eigenvalues of the matrix A. These vectors are added to rP , increasing its dimension. In order to save on 
computational cost and memory requirements arising from the preconditioning operations, an upper limit, maxr , 
on r is set; when it is reached, the update of the preconditioner stops and the GMRES(m) continues with the same 
preconditioner. The key idea of this preconditioning technique is to remove by deflation the smallest eigenvalues 
of the matrix A that cause slow or no convergence of the GMRES(m)[13]. 

3.3 PARTITIONING 

 The partitioner of the FE-BUI package is based on an overlapped domains[14] partitioning technique. The 
original domain, tessellated by the finite element method, is divided into subdomains. A subdomain is defined as 
a separate group of elements and it is assigned to a processor. 

 
Figure 2. A sample 2D finite element mesh assigned to 2 processors. Dashed and solid lines depict the 2 

  overlapped subdomains. 

 In Figure 2 is shown a 2D finite element mesh that is assigned to 2 processors. According to this partitioning 
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technique, each processor takes 15 nodes, i.e. 15 rows of the matrix A, 1 to 15 for the first processor and 16 to 30 
for the second processor. Each processor in order to fully assemble every local node contribution to the matrix A, 
makes some extra computations to the common elements 9 to 12. The nodes of these elements are called 
communication nodes. 
 Thus, in FE-BUI the decomposition of the finite element mesh corresponds to the distribution of the matrix A 
rows to the processors. It is known that this technique leads to smaller parallel efficiency than that of other 
domain decomposition techniques[14],[10] (see also section 5), but offers flexibility and usage convenience to the 
FE-BUI package. 

3.4 PARALLEL OPERATIONS IN THE FE-BUI 

 The basic operations of the GMRES method are: (i) Vector updates, (ii) inner products, (iii) matrix-vector 
products. Moreover, preconditioning operations are needed for the preconditioned GMRES(m). The performance 
of these operations depend on the choice of the preconditioner. The deflation preconditioning technique can be 
analyzed in the same basic operations as the GMRES method. All these operations can be decomposed in tasks 
and each task can be independently executed on each processor. More details about the parallel implementation 
of these operations on Beowulf clusters are available in [10]. Briefly, vector updates can be done in parallel 
without communication between the processors. In order to compute an inner product each processor computes a 
local inner product. The latter operation is completed through a global communication between the processors to 
sum up the calculated local inner products. During the global communication, the processors exchange data of 
length of 8 bytes (the scalar local inner product). For the matrix-vector product, a communication between its 
processor and its neighbors is required. During the neighboring communication the processors exchange arrays of 
length equal to the communication nodes. For example, with reference to figure 2, the processors exchange data 
of length of  4085 =⋅ bytes. 

In FE-BUI the matrix-vector product can be done using three methods: a) Compressed Sparse Row Format 
(CSR) were only the nonzero elements of the matrix A are stored. b) The element-by-element matrix-vector 
product and c) With a matrix-free approach[15], that is by approximating the elements of A by differencing; this is 
often the case in nonlinear problems, where A is the Jacobian matrix corresponding to the discretized equations. 

4 USAGE OF THE FE-BUI 

 As a first step with the FE-BUI package, the new user can simply call from his/her serial code the driver 
subroutine FEBUIdrv replacing the serial solver call. This driver takes care of the solution of the linear system by 
calling the default partitioning and solver subroutines. At a more advanced level, the user can call selectively the 
appropriate subroutines. 
 The required input data of the FEBUIdrv are already computed in most finite element codes. Typical input 
data are: 
a) the total number of the nodes (NN) and the elements (NE) of the mesh, 
b) the array NpE of dimension NE – NpE(NE) – that contains the number of nodes of each element, 
c) the array NOP(NE,max(NpE)) that associates the local (element level) and global (mesh level) numbering of 

nodes, 
d) the arrays NCOD(NN) and BC(NN), for distinguishing nodes bearing Dirichlet boundary conditions, 
e) an approximation to the solution u(NN), in case of nonlinear equation systems. 
 Also the user must supply the subroutine that computes the element contributions and the right hand side of 

the linear system. 

5 RESULTS 

 The parallel efficiency of an algorithm is measured by the parallel speedup[14],[16], S, which indicates how 
faster the algorithm runs using p processors compared to the performance on one processor: 

processors pon  timeExecution 
processor 1on  timeExecution S =  (9) 

 Ideally, a parallel algorithm must run p times faster when executed on p processors. However, the speedup is 
limited by the ever-present serial tasks in a parallel algorithm, by the load balancing and by the communication 
between the processors that is the main factor of a reduced parallel speedup. 
 The FE-BUI has been tested on the solution of a three-dimensional, nonlinear and free boundary problem of 
intefacial magnetohydrostatics[17]. The achieved speedup of the preconditioned GMRES(m) is shown  in table 1 
for two cases: 
(i) parallel computations with FE-BUI, 
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(ii) parallel computations with a parallel code that was developed in [18]. 
 The computations were done on a linear system of 254,857 nodes at a small Beowulf cluster of 4 nodes 

(http://www.chemeng.ntua.gr/yk/cluster) 
 

CPUs Case (i) Case (ii) 
1 1 1 
2 1.8 1.9 
3 2.7 - 
4 3.4 3.9 
Table 1: Parallel speedup 

 
 The achieved speedup is smaller than the ideal, in both cases, due to the communication between the 4 
processors. The speedup in (i) is smaller than in (ii) since FE-BUI “ignores” particular aspects[18] of the mesh, 
resulting in a slightly unbalanced distribution of the mesh to the available processors; in such a case, the under-
loaded processors have to remain idle until the over-loaded processors finish their tasks. 
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Figure 3. The convergence of the GMRES(m), m = 100, 200 and the DEFLGMRES(100), rmax = 20. 

 In Figure 3 is shown the convergence of the GMRES(m) and the preconditioned GMRES(m) by deflation – 
DEFLGMRES(m). The horizontal axis is the product of m by the restarts of the GMRES(m) or 

DEFLGMRES(m). The vertical axis is the residual 
2

2m

b
Axb
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−

= . 

 Another important feature of the preconditioner of the FE-BUI is that the additional communication load 
coming from the extra preconditioning operations, has no appreciable effect on the speedup of the GMRES(m) – 
a significant advantage of the chosen preconditioner compared to a commonly used ILU-type preconditioner[10]. 

The achieved speedup versus the number of processors for two problem sizes, N=68,377 and N=254,857 is 
shown in figure 4. The speedup increases with the number of processors significantly faster in big problems than 
in smaller ones, because in the former case the computational time increases faster than the communication time, 
as it is noticed also from figure 5. The latter figure shows the relative communication (global and neighbouring) 
and computational time as percentages of the total execution time of the parallel preconditioned GMRES(m) 
versus the problem size, when the solver runs on 4 processors. 
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Figure 4. Parallel speedup versus the number of processors for two problem sizes. 

The main network overhead comes from the global communication time, although the message length is too 
small. This is due to the high latency of the Ethernet network of our cluster. The time (tcomm) that is spend for a 
message of n bytes in length is given from: 

nt comm ⋅+= ba  (10) 

where a is the latency of the network and b is the time for sending 1 byte. Thus, two network related factors limit 
the communication time: the latency and the bandwidth. Latency limits the exchange of small messages, mainly 
required in global communication whereas bandwidth limits the exchange of large messages, as happens in the 
neighboring communication. Thus, for finite element parallel computations with iterative Krylov solvers, a 
network with small latency is strongly preferred. 
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Figure 5. Computational vs Communication time. 

 More information about the usage and the availability of the FE-BUI, is available at 
http://www.chemeng.ntua.gr/yk/cluster. 
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